External Flow Correlations (Average, Isothermal Surface)

Flat Plate Correlations

Flow Conditions	Average Nusselt Number	Restrictions
Laminar	$\overline{Nu_L} = 0.664 \operatorname{Re}_L^{1/2} \operatorname{Pr}^{1/3}$	Pr ≥ 0.6
Turbulent	$\overline{Nu_L} = (0.037 \operatorname{Re}_L^{4/5} - A) \operatorname{Pr}^{1/3}$ where $A = 0.037 \operatorname{Re}_{x,c}^{4/5} - 0.664 \operatorname{Re}_{x,c}^{1/2}$	$0.6 \le \Pr \le 60$ $\operatorname{Re}_{x,c} \le \operatorname{Re}_{L} \le 10^{8}$

Note: All fluid properties are evaluated at film temperature for flat plate correlations.

Cylinders in Cross Flow

Cylinder Cross Section	Reynolds Number Range	Average Nusselt Number	Restrictions
	0.4-4	$\overline{Nu_D} = 0.989 \operatorname{Re}_D^{0.330} \operatorname{Pr}^{1/3}$	$\Pr \ge 0.7$
^v →O\$⊅	4-40	$\overline{Nu_D} = 0.911 \operatorname{Re}_D^{0.385} \operatorname{Pr}^{1/3}$	$\Pr \ge 0.7$
	40-4,000	$\overline{Nu_D} = 0.683 \operatorname{Re}_D^{0.466} \operatorname{Pr}^{1/3}$	Pr≥0.7
	4,000- 40,000	$\overline{Nu_D} = 0.193 \mathrm{Re}_D^{0.618} \mathrm{Pr}^{1/3}$	$\Pr \ge 0.7$
	40,000- 400,000	$\overline{Nu_D} = 0.027 \operatorname{Re}_D^{0.805} \operatorname{Pr}^{1/3}$	$\Pr \ge 0.7$
	6,000- 60,000	$\overline{Nu_L} = 0.304 \mathrm{Re}_D^{0.59} \mathrm{Pr}^{1/3}$	gas flow
	5,000- 60,000	$\overline{Nu_D} = 0.158 \operatorname{Re}_D^{0.66} \operatorname{Pr}^{1/3}$	gas flow
	5,200- 20,400	$\overline{Nu_D} = 0.164 \operatorname{Re}_D^{0.638} \operatorname{Pr}^{1/3}$	gas flow
	20,400- 105,000	$\overline{Nu_D} = 0.039 \mathrm{Re}_D^{0.78} \mathrm{Pr}^{1/3}$	gas flow
	4,500- 90,700	$\overline{Nu_D} = 0.150 \mathrm{Re}_D^{0.638} \mathrm{Pr}^{1/3}$	gas flow

Note: All fluid properties are evaluated at film temperature for cylinder in cross flow correlations.

<u>Alternative Correlations for Circular</u> <u>Cylinders in Cross Flow:</u>

• The Zukauskas correlation (7.53) and the Churchill and Bernstein correlation (7.54) may also be used

Freely Falling Liquid Drops

Average Nusselt Number

$$\overline{Nu_D} = 2 + 0.6 \operatorname{Re}_D^{1/2} \operatorname{Pr}^{1/3}$$

Note: All fluid properties are evaluated at $T_{\scriptscriptstyle \infty}$ for the falling drop correlation.

Flow Around a Sphere

Average Nusselt Number	Restrictions
$\overline{Nu_D} = 2 + \left(0.4 \operatorname{Re}_D^{1/2} + 0.06 \operatorname{Re}_D^{2/3}\right) \operatorname{Pr}^{0.4} \left(\frac{\mu}{\mu_s}\right)^{1/4}$	$0.71 \le \Pr \le 380$ $3.5 \le \operatorname{Re}_{D} \le 7.6 \times 10^{4}$ $1.0 \le (\mu / \mu_{s}) \le 3.2$

Note: For flow around a sphere, all fluid properties, except μ_s , are evaluated at T_{∞} . μ_s is evaluated at T_s .

Internal Flow Correlations (Local, Fully Developed Flow)

Note: For all local correlations, fluid properties are evaluated at T_m . For average correlations, fluid properties are evaluated at the average of inlet and outlet T_m . If the tube is much longer than the thermal entry length, average correlation \approx local correlation.

Laminar Flow in Circular and Noncircular Tubes				
		$Nu_D \equiv \frac{h}{2}$		
Cross Section	$\frac{b}{a}$	Uniform Heat Flux	Uniform Surface Temperature	$f \operatorname{Re}_{D_h}$
\bigcirc	0 0	4.36	3.66	64
a 📄	1.0	3.61	2.98	57
a	1.43	3.73	3.08	59
a b	2.0	4.12	3.39	62
a	3.0	4.79	3.96	69
	4.0	5.33	4.44	73
	8.0	6.49	5.60	82
	8	8.23	7.54	96
Heated	8	5.39	4.86	96
	88 <u>-</u> 88	3.11	2.49	53

<u>Turbulent Flow in Circular Tubes</u>			
Local Nusselt Number	Restrictions		
$Nu_{D} = 0.023 \operatorname{Re}_{D}^{4/5} \operatorname{Pr}^{n}$	$0.6 \le \Pr \le 160$		
$n = 0.40$ for $T_s > T_m$	${\rm Re}_{D} \ge 10,000$		
$n = 0.30 \ for T_s < T_m$	$(L/D) \ge 10$		

Turbulent Flow in Noncircular Tubes

For turbulent flow in noncircular tubes, *D* in the table above may be replaced by $D_h=4A_c/P$

<u>Alternative Correlations for Turbulent</u> <u>Flow in Circular Tubes:</u>

• The Sieder and Tate Correlation (8.61) is recommended for flows with large property variations

• Another alternate correlation that is more complex but more accurate is provided by Gnielinski (8.62).

Liquid Metals, Turbulent Flow, Constant T_s

Local Nusselt Number	Restrictions
$Nu_D = 5.0 + 0.025 Pe_D^{0.8}$ $Pe_D = \text{Re}_D \text{Pr}$	$Pe_D \ge 100$

Note: Only use the correlation in the box directly above for liquid metals. The other correlations on this page are not applicable to liquid metals.

Combined Internal/External Flow Correlations (Average)

Tube banks and packed beds have characteristics of both internal and external flow. The flow is internal in that the fluid flows inside the tube bank/packed bed, exhibits exponential temperature profiles of the mean temperature, and has heat transfer governed by a log mean temperature difference. The flow is external in that it flows over tubes/packed bed particles and that the characteristic dimension in the Reynolds number is based on tube/particle diameter.

Tube Bank Correlation

Average Nusselt Number	Restrictions
$\overline{Nu_D} = C \operatorname{Re}_{D,\max}^m \operatorname{Pr}^{0.36} \left(\frac{\operatorname{Pr}}{\operatorname{Pr}_s}\right)^{1/4}$	$\begin{split} N_L &\geq 20 \\ 0.7 &\leq \Pr \leq 500 \\ 10 &\leq \operatorname{Re}_{D,\max} \leq 2 \times 10^6 \end{split}$

Note: For tube banks with fewer than 20 rows, multiply the average Nusselt number from the table at left by the correction factor C_2 in Table 7.6. This correction is valid if $Re_{D,max}$ is > 1,000.

Configuration	$Re_{D,\max}$	C	m
Aligned	10-10 ²	0.80	0.40
Staggered	$10-10^2$	0.90	0.40
Aligned	$10^2 - 10^3$	Approximate as	a single
Staggered	$10^{2}-10^{3}$	(isolated) cylinder	
Aligned	$10^{3}-2 \times 10^{5}$	0.27	0.63
$(S_T/S_L > 0.7)^a$			
Staggered	$10^{3}-2 \times 10^{5}$	$0.35(S_T/S_L)^{1/5}$	0.60
$(S_T/S_L < 2)$			
Staggered	$10^{3}-2 \times 10^{5}$	0.40	0.60
$(S_T/S_L > 2)$			
Aligned	$2 \times 10^{5} - 2 \times 10^{6}$	0.021	0.84
Staggered	$2 \times 10^{5} - 2 \times 10^{6}$	0.022	0.84

"For $S_T/S_L < 0.7$, heat transfer is inefficient and aligned tubes should not be used.

Packed Bed Correlation

Average Nusselt Number	Restrictions
$\varepsilon \overline{j_H} = \varepsilon \overline{j_M} = 2.06 \mathrm{Re}_D^{-0.575}$	$\Pr(or Sc) \approx 0.7$ $90 \le \operatorname{Re}_D \le 4,000$
where $\overline{j_H} = \frac{\overline{h}}{\rho V c_p} \operatorname{Pr}^{2/3}$	
$\overline{j_M} = \frac{\overline{h_m}}{V} Sc^{2/3}$	

Evaluate all fluid properties at the film temperature $T_{\rm f}$ = (T_{\infty} + T_s) / 2 .

Vertical Plate, Vertical Cylinder, Top Side of Inclined Cold Plate, Bottom Side of Inclined Hot Plate

Average Nusselt Number	Restrictions	
$\overline{Nu_L} = \left\{ 0.825 + \frac{0.387Ra_L^{1/6}}{\left[1 + \left(0.492/\operatorname{Pr}\right)^{9/16}\right]^{8/27}} \right\}^2$	Vertical plate: no restrictionsVertical cylinder: $\frac{D}{L} \ge \frac{35}{Gr_L^{1/4}}$ Top Surface of Inclined Cold Plate / Bottom Surface of Inclined Hot Plate:• Replace g with g cos θ in Ra _L • Valid for $0 \le \theta \le 60$	 <u>Alternative Correlation</u> <u>for Vertical Plate:</u> Equation (9.27) is slightly more accurate for laminar flow.

Horizontal Plate

Orientation	Average Nusselt Number	Restrictions	
Upper surface of hot plate or	$\overline{Nu_L} = 0.54 Ra_L^{1/4}$	$10^4 \le Ra_L \le 10^7$, $\Pr \ge 0.7$	
lower surface of cold plate	$\overline{Nu_L} = 0.15Ra_L^{1/3}$	$10^7 \le Ra_L \le 10^{11}$, all Pr	$L \equiv \frac{A_s}{P}$
Lower surface of hot plate or upper surface of cold plate	$\overline{Nu_L} = 0.52Ra_L^{1/5}$	$10^4 \le Ra_L \le 10^9$, $\Pr \ge 0.7$	

Curved Shapes

Shape	Average Nusselt Number	Restrictions
Long Horizontal Cylinder	$\overline{Nu_D} = \left\{ 0.60 + \frac{0.387 R a_D^{1/6}}{\left[1 + \left(0.559 / \Pr \right)^{9/16} \right]^{8/27}} \right\}^2$	$Ra_D \leq 10^{12}$
Sphere	$\overline{Nu_D} = 2 + \frac{0.589Ra_D^{1/4}}{\left[1 + \left(0.469/\operatorname{Pr}\right)^{9/16}\right]^{4/9}}$	$\Pr \ge 0.7$ $Ra_D \le 10^{11}$

<u>Alternative Correlation</u> <u>for Long Horizontal</u> <u>Cylinder:</u>

• The Morgan correlation (9.33) may also be used.

Internal Free Convection Correlations

Vertical Parallel Plate Channels (Developing and Fully Developed)

Boundary Condition	Nusselt Number	Rayleigh Number	Getting q and q _s " from Nu	Temperature to evaluate fluid properties in Ra
isothermal (T _s known on one or both plates)	Average Nu over whole plate $\overline{Nu_s} = \left[\frac{C_1}{\left(Ra_s S / L\right)^2} + \frac{C_2}{\left(Ra_s S / L\right)^{1/2}}\right]^{-1/2}$	$Ra_{s} = \frac{g\beta(T_{s} - T_{\infty})S^{3}}{\alpha v}$	$\overline{Nu_{S}} = \left(\frac{q/A}{T_{s} - T_{\infty}}\right)\frac{S}{k}$	$\overline{T} = \frac{T_s + T_{\infty}}{2}$
isoflux (q _s " known on one or both plates)	$\frac{\text{Local Nu at x} = L}{Nu_{S,L}} = \left[\frac{C_1}{Ra_S^* S / L} + \frac{C_2}{\left(Ra_S^* S / L\right)^{2/5}}\right]^{-1/2}$	$Ra_{S}^{*} = \frac{g\beta q_{s}^{*}S^{4}}{k\alpha\nu}$	$Nu_{S,L} = \left(\frac{q_s}{T_{s,L} - T_{\infty}}\right)\frac{S}{k}$	$\overline{T} = \frac{T_{s,L} + T_{\infty}}{2}$

S = plate spacing; T_{∞} =inlet temperature (same as ambient); $T_{s,L}$ =surface temperature at x=L

Surface Condition	C_1	C_2
1) Symmetric isothermal plates $(T_{s,1} = T_{s,2})$	576	2.87
2) Symmetric isoflux plates $(q''_{s,1} = q''_{s,2})$	48	2.51
3) Isothermal/adiabatic plates $(T_{s,1}, q''_{s,2} = 0)$	144	2.87
4) Isoflux/adiabatic plates $(q''_{s,1}, q''_{s,2} = 0)$	24	2.51

 C_1 and C_2 are given for four different sets of surface boundary conditions. Use the isothermal equation for conditions 1 and 3; isoflux equation for conditions 2 and 4.

1)
$$\begin{bmatrix} T_{s1} & T_{s2} = T_{s1} & q''_{s1} & q''_{s2} = q''_{s1} \\ 2 \end{bmatrix} \begin{bmatrix} T_{s1} & q''_{s2} = 0 \\ 3 \end{bmatrix} \begin{bmatrix} q''_{s2} = 0 \\ 4 \end{bmatrix} \begin{bmatrix} q''_{s1} & q''_{s1} & q''_{s2} = 0 \\ 4 \end{bmatrix} \begin{bmatrix} q''_{s1} & q''_{s2} & q''_{s1} & q''_{s2} & q''_{s1} \\ 4 \end{bmatrix} \begin{bmatrix} q''_{s1} & q''_{s2} & q''_{s1} & q''_{s1} & q''_{s2} & q''_{s1} \\ 4 \end{bmatrix} \begin{bmatrix} q''_{s1} & q''_{s1} \\ 4 \end{bmatrix} \begin{bmatrix} q''_{s1} & q''_$$

Vertical Rectangular Cavity

Average Nusselt Number	Restrictions	
$\overline{Nu_L} = 0.18 \left(\frac{\Pr}{\Pr+0.2} Ra_L\right)^{0.29}$	$1 \le (H/L) \le 2$ $10^{-3} \le \Pr \le 10^{5}$ $10^{3} \le \frac{Ra_L \Pr}{0.2 + \Pr}$	
$\overline{Nu_L} = 0.22 \left(\frac{\Pr}{\Pr+0.2} Ra_L\right)^{0.28} \left(\frac{H}{L}\right)^{-1/4}$	$2 \le (H/L) \le 10$ Pr $\le 10^5$ $10^3 \le Ra_L \le 10^{10}$	
$\overline{Nu_L} = 0.42 Ra_L^{1/4} Pr^{0.012} \left(\frac{H}{L}\right)^{-0.3}$	$10 \le (H/L) \le 40$ $1 \le \Pr \le 2 \times 10^4$ $10^4 \le Ra_L \le 10^7$	

<u>Alternative Correlation for Vertical</u> <u>Rectangular Cavity:</u>

• Eq. (9.53) covers a wide range of aspect ratios but is more restrictive on Ra and Pr

Horizontal Cavity Heated From Below

Average Nusselt Number	Restrictions
$\overline{Nu_L} = 0.069 Ra_L^{1/3} Pr^{0.074}$	$3 \times 10^5 \le Ra_L \le 7 \times 10^9$

For cavity correlations, evaluate all fluid properties at the average surface temperature \overline{T} = (T₁ + T₂) / 2. L is the distance between hot and cold walls.

Correlations for Inclined/Tilted Geometries:

- Inclined parallel plate channels: (9.47)
- Tilted rectangular cavities: (9.54)-(9.57)

Correlations for Curved Geometries:

- Space between concentric horizontal cylinders: (9.58)
- Space between concentric spheres: (9.61)

Boiling and Condensation

Nucleate Pool Boiling

$$q_{s}^{"} = \mu_{l} h_{fg} \left[\frac{g(\rho_{l} - \rho_{v})}{\sigma} \right]^{1/2} \left(\frac{c_{p,l} \Delta T_{e}}{C_{s,f} h_{fg} \operatorname{Pr}_{l}^{n}} \right)^{3}$$

Evaluate liquid and vapor properties at T_{sat} .

Surface–Fluid Combination	$C_{s,f}$	п
Water-copper		
Scored	0.0068	1.0
Polished	0.0128	1.0
Water-stainless steel		
Chemically etched	0.0133	1.0
Mechanically polished	0.0132	1.0
Ground and polished	0.0080	1.0
Water-brass	0.0060	1.0
Water-nickel	0.006	1.0
Water-platinum	0.0130	1.0
<i>n</i> -Pentane–copper		
Polished	0.0154	1.7
Lapped	0.0049	1.7
Benzene-chromium	0.0101	1.7
Ethyl alcohol-chromium	0.0027	1.7

Critical Heat Flux

$$q_{\max}^{"} = Ch_{fg}\rho_{v} \left[\frac{\sigma g(\rho_{l} - \rho_{v})}{\rho_{v}^{2}}\right]^{1/4}$$

Evaluate liquid and vapor properties at T_{sat}.

C =0.149 for large horizontal plates. C=0.131 for large horizontal cylinders, spheres, and many large finite heated surfaces.

Film Boiling

$$\overline{Nu_D} = \frac{\overline{h}_{conv}D}{k_v} = C \left[\frac{g(\rho_l - \rho_v)h'_{fg}D^3}{\nu_v k_v (T_s - T_{sat})} \right]^{1/4}$$
$$h'_{fg} = h_{fg} + 0.80c_{p,v} (T_s - T_{sat})$$

Evaluate vapor properties at $T_f = (T_{sat} + T_s \;) \, / \, 2$. Evaluate ρ_l and h_{fg} at T_{sat} .

C =0.67 for spheres. C=0.62 for horizontal cylinders.

Radiation should be considered for $T_s > 300^{\circ}C$ See Eqs. (10.9)-(10.11)

Correlations for Flow Boiling:

- External forced convection boiling: (10.12)-(10.14)
- Two-phase flow: (10.15)-(10.16)

$\frac{For all condensation correlations below:}{Evaluate liquid properties at T_f = (T_{sat} + T_s)/2}.$ $Evaluate \rho_v and h_{fg} at T_{sat}.$

Laminar Film Condensation, Vertical Flat Plate

$$\overline{h}_{L} = 0.943 \left[\frac{\rho_{l} g(\rho_{l} - \rho_{v}) h_{fg}' k_{l}^{3}}{\mu_{l} (T_{sat} - T_{s}) L} \right]^{1/4}$$
$$h_{fg}' = h_{fg} + 0.68 c_{p,l} (T_{sat} - T_{s})$$

<u>Laminar, Transition, and</u> <u>Turbulent Film Condensation,</u> <u>Vertical Flat Plate (for ρ_l >> ρ_v):</u>

• Calculate the parameter P using (10.42), then solve for h_L using the appropriate correlation from (10.43)-(10.45)

<u>Film Condensation,</u> <u>Vertical Tube:</u>

• Vertical flat plate expressions can be used if $\delta(L) \ll D/2$. Evaluate $\delta(L)$ using (10.26).

Laminar Film Condensation, Sphere and Tube

$$\overline{h}_{D} = C \left[\frac{\rho_{l} g(\rho_{l} - \rho_{v}) h_{fg}' k_{l}^{3}}{\mu_{l} (T_{sat} - T_{s}) D} \right]^{1/4}$$
$$h_{fg}' = h_{fg} + 0.68 c_{p,l} (T_{sat} - T_{s})$$

C =0.826 for spheres.

C=0.729 for horizontal tubes.

Laminar Film Condensation, Vertical Tier of N Tubes:Average heat transfer coefficient of each tube: Eq. (10.49).

Inner Surface of Horizontal Tube

Average Nusselt Number	Restrictions	
$\overline{h}_{D} = 0.555 \left[\frac{\rho_{l} g(\rho_{l} - \rho_{v}) h_{fg}' k_{l}^{3}}{\mu_{l} (T_{sat} - T_{s}) D} \right]^{1/4}$ $h_{fg}' = h_{fg} + 0.375 c_{p,l} (T_{sat} - T_{s})$	$\left(\frac{\rho_v u_{m,v} D}{\mu_v}\right)_i < 35,000$	
Eq. (10.51)	$\left(\frac{\rho_{\nu} u_{m,\nu} D}{\mu_{\nu}}\right)_{i} \ge 35,000$	

Dropwise Condensation

Average Nusselt Number	Restrictions	
$\overline{h}_{dc} = 51,104 + 2044T_{sat}(^{\circ}C)$	$22^{\circ}C \leq T_{sat} \leq 100^{\circ}C$	
$\overline{h}_{dc} = 255,510$	$T_{sat} \ge 100^{\circ}C$	